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A two-dimensional relativistic Vlasov model for a multi-computer environment
was developed to address the particle acceleration process in phase space, including
situations relevant to forward Raman scattering (FRS) and plasma beatwave acceler-
ation (PBWA). Attention was focused on its accuracy, stability, efficiency properties,
and implementation facilities on massively parallel computers. The two-dimensional
Vlasov code has been adapted to optimally use the particular parallel architecture of
the T3D or T3E computer (both processor’s specifications and node-to-node com-
munications). Results obtained on a 64-node Cray T3D clearly show the details
of particle acceleration in phase space, including very low density regions where
particles-in-cell (PIC) codes simply run out of calculation particles. On the other
hand optimization obtained on the T3D architecture leads to a CPU time of 9.5µs
per time step, per particle, per processor indicating that one processor on the Cray
C94 computer is equivalent to 20 processors on the T3D computer. Finally, we note
that the Vlasov code is able to achieve high parallel efficiency with scalability of
order 2. c© 1999 Academic Press

Key Words:laser-plasma interaction; parallelism on T3E; semi-Lagrangian Vlasov
codes.

1. INTRODUCTION

Since the suggestion by Tajima and Dawson [1] of particle acceleration by means of
plasma waves in 1979, various schemes have been proposed to excite large amplitude
electron plasma waves (EPW) (theoretically capable of reaching an electric field of the order
of GV/m). Such a wave is of interest as a particle accelerator concept since electron plasma
wave amplitude can largely exceed the breaking limit of the standard metallic cavity based
accelerator, which is of the order of 30 MV/m. One of the promising schemes for exciting
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strong plasma waves remains the plasma beatwave accelerator (PBWA), which is based on
the injection of two electromagnetic waves in a plasma of low density. The difference of
frequencies of the two electromagnetic waves is chosen to be equal to the plasma frequency.
In these conditions, the beat of theses two waves resonantly induces a high-phase velocity
longitudinal plasma wave which traps and accelerates electrons to ultra relativistic energies.
Because the excitation of the plasma wave relies on the resonant temporel beating of lasers,
the pulse durations have to be much greater than the plasma periodωp and precise matching
is crucial. A very similar mechanism is involved in the forward Raman scattering (FRS)
process, in which an incident electromagnetic wave decays into an electron plasma wave
and a scattered electromagnetic wave.

In previous papers, examples of PBWA and FRS simulations using one-dimensional
Vlasov simulations with periodic or open-system boundary conditions have been carried
out (see [2–4]). Such codes render possible a detailed examination of the low density re-
gions of the phase space especially the description of the tail phenomena, where only a
small number of electrons is involved. In this type of problem, “particles-in-cell” (PIC)
codes suffer from poor statistics. This is because the PIC codes lack enough simulation
particles to display the detailed phase space structures of the distribution function which
is often obtained in those regions of phase space where particle and phase velocities are
comparable and where trapping or plasma wavebreaking occurs. A second advantage is
the noiseless character of the Vlasov code. Thus during the simulation, we can analyze the
microscopic wave-particle dynamics, the tail formation, and the energy transfer from the
pump and idler waves to electrons.

A primary motivation for the present work is to take into account two-dimensional spa-
tial effects in the particle acceleration. The nature of the computational algorithm (with
the eulerian characterization of the distribution function) along with the large memory re-
quirements of the phase space representation (i.e., with at least four phase space variables
to describe the electron distribution function) makes this problem a good candidate for
parallel execution. Hence a secondary goal of this work is to address key issues involved in
parallelizing a Vlasov code in an electromagnetic relativistic regime.

The paper is organized as follows. In Section 2 the plasma geometry is described and the
governing equations are derived. The numerical algorithm implemented on the parallel Cray
T3D computer is presented in Section 3, including details on the time splitting scheme used
for integrating the Vlasov equation and the transposition method of distribution function
used here. Issues related to parallelizing the code are then adressed in this section. Numerical
results relevant to FRS are then presented in Section 4 and comparisons are made with the
one-dimensional case in order to test the validity of the Vlasov code. This section also
includes a discussion on the Manley–Rowe partition and the influence of the transverse
gaussian pump profile on the particle acceleration mechanism. A more complex situation is
then described in Section 5 relevant to plasma beatwave acceleration including Stokes and
anti-Sokes cascades and side-scattering. Concurrent performance of the model is discussed
in Section 6. Conclusions and future work are offered in Section 7.

2. THE 2D RELATIVISTIC VLASOV MODEL

In forward Raman scattering (FRS) and plasma beatwave acceleration (PBWA), the pon-
deromotive force drives a large amplitude plasma wave along the laser wavevector direction
and produces trapped electrons with very high momenta. To model this, we consider an
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infinite homogeneous plasma of densityno in both the x and y direction with a laser wavevec-
tor in the x direction: all field quantities being a function of the space variables x and y.
Using the Coulomb gauge∇ · A = 0, we restrict the potential vectorA to be in the z
direction only (linear polarization). Recalling that

E = −∇8− ∂A
∂t

(1)

we have in the perpendicular direction z,

Ez = −∂Az

∂t
(2)

and in the plasma plane,

Ex = −∂8
∂x

and Ey = −∂8
∂y
. (3)

The electron distribution functionF(x, y, p, t) obeys the relativistic Vlasov equation

∂F

∂t
+ p

mγ

∂F

∂r
+ e

[
E+ p

mγ
× B

]
∂F

∂p
= 0, (4)

wherer = (x, y, 0) andp = (px, py, pz) with the Lorentz factor given by

γ =
√

1+
(

p2

m2c2

)
. (5)

But huge memory requirements are necessary to handle a full 2D1/2 model, i.e., five phase
space variablesx, y, px, py, andpz as discussed above. Thus let us consider the following
class of exact solutions of (4),

F(x, y, px, py, pz, t) = f (x, y, px, py, t)δ[ pz− Pz(x, y, t)] (6)

which is relevant to low perpendicular temperature plasma. The reduced 2D distribution
function f (x, y, px, py, t) describing the particle motion in the(x, y) plane satisfies the
two-dimensional relativistic Vlasov equation

∂ f

∂t
+ px

mγ

∂ f

∂x
+ py

mγ

∂ f

∂y
+ e

[
Ex − PzBy

mγ

]
∂ f

∂px
+ e

[
Ey + PzBx

mγ

]
∂ f

∂py
= 0 (7)

with a Lorentz factor of the form

γ =
√

1+ p2
x + p2

y + P2
z (x, y, t)

m2c2
. (8)

Assuming the relativistic contribution is due to accelerated particles only along the longi-
tudinal direction (i.e., laser propagation direction or x direction), the Lorentz factor can be
simplified toγ '√1+ p2

x/m2c2. This is valid for moderate intensity with quiver momen-
tum of order 0.1 mc. Furthermore since the relative number of accelerated particles in the
x direction remains very small in the beatwave experiment, we can takenγ ' 1, in the term
e[Ex − PzBy/mγ ]∂ f/∂px since∂ f/∂px¿ n0/m3c3, for a small population of accelerated
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particle density, which remains small in comparison with the mean electron densityn0 (the
normalized quantity is then∂ f̂ /∂ p̂x¿ 1 where the dimensionless space and momentum
variables used in simulation have been taken to bex̂= xωp/c and p̂x = px/mc. The timet̂
and the distribution function̂f are then normalized to the inverse plasma frequencyω−1

p and
ton0/m2c2; the electron density in then normalized ton0. Comparison with a full relativistic
Vlasov code does not give a difference for the range of laser intensities considered here.

In this model, the transverse momentum effects in the z direction are described by a
cold “fluid” model. The transverse momentumPz(x, y, t) is simply obtained through the
conservation of the canonical generalized momentumPz+eAz = 0. Deriving with respect
to time and using (2) yield

∂Pz

∂t
= eEz. (9)

The plasma self consistent electric field componentsEx andEy are given by Eqs. (3) while
the potential8 obeys the Poisson equation

18 = − e

εo
[ne(x, y, t)− no]. (10)

no is the homogeneous ion density andne=
∫

f dpx dpy. The electromagnetic field com-
ponents(Ez, Bx, By) obey Maxwell’s equations

∂Bx

∂t
= −∂Ez

∂y
(11)

∂By

∂t
= −∂Ez

∂x
(12)

∂Ez

∂t
= c2

(
∂By

∂x
− ∂Bx

∂y

)
− Jz

εo
, (13)

whereJz = enePz/m.

3. THE NUMERICAL PARALLEL ALGORITHM

3.1. Semi-Lagrangian Advection

In an Eulerian advection scheme an observer watches the world evolve around him at a
fixed geographical point. Such schemes work well on regular cartesian meshes (facilitating
vectorisation and parallelization of the resulting code), but often lead to overly restrictive
time steps due to considerations of computational stability. In a Lagrangian advection
scheme (as PIC codes) an observer watches now the world evolve around him as he travels
with the fluid particle. Such schemes can often use much larger time steps than Eulerian ones,
but have the disadvantage that an initially regularly spaced set of particles will generally
evolve to a highly irregularly spaced set at later times. The idea behind semi-Lagrangian
advection (see [6]) is to try to get the best of both worlds: the regular resolution of Eulerian
schemes and the enhanced stability of Lagrangian ones. This is achieved by using a different
set of particles at each time step, the set of particles being chosen such that they arrive exactly
at the points of a regular cartesian mesh at the end of the time step.
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The semi-Lagrangian Vlasov code (see Refs. [2, 3]) has been adapted to optimally use
the particular parallel architecture of the Cray T3D and then T3E. For example, in the
case of a one-dimensional electrostatic problem described by a Vlasov equation of type
∂ f
∂t + v ∂ f

∂x + eE
m
∂ f
∂v
= 0, the well-known fractional step or “splitting scheme” (see Refs. [7, 8]

for bidimensional models) used to integrate the distribution functionf (x, v, t) (in which
we shift the distribution function alternatively in thex direction leading to the mathematical
form f ∗(x, v)= f (x− v1t, v) and then in thev direction with the corresponding expres-
sion f ∗∗(x, v)= f ∗(x, v− eE1t/m)) is straightforward to parallelize. Each shift is easily
parallelized by just assigning a fraction of the distribution function to each node (for ex-
ample, for the shift in thex direction, we break thev direction into regions with a region
assigned to a node), and thus each processor handles those grid points in its region. Then a
transposition of the distribution function is required to perform the parallelized shift in the
second direction.

3.2. Two-Dimensional Relativistic Vlasov Equation

Let us define f n(x̃, y, px, py)= f (x̃, y, px, py, tn= n1t) as the function distributed
among the processors along the x direction andf n(x, y, p̃x, py) as the function obtained
by transposition, i.e., with a decomposition domain in thepx direction. The Vlasov equation
is then advanced using the time splitting scheme, which involved here four steps:

Step A1. Transpose the function and shift in the x and y direction,

f n(x̃, y, px, py)⇒ f n(x, y, p̃x, py)

f ∗(x, y, p̃x, py) = f n

(
x − p̃x

mγ

1t

2
, y, p̃x, py

)
f 2∗(x, y, p̃x, py) = f ∗

(
x, y− py

mγ

1t

2
, p̃x, py

)
.

(14)

and then make the inverse transposition,f 2∗(x, y, p̃x, py)⇒ f 2∗(x̃, y, px, py).
Step A2. Compute the electromagnetic field and fluid momentumPz at timetn+1/2 and

then shift inp space for a time step1t ,

f 3∗(x̃, y, px, py) = f 2∗
(

x̃, y, px − e

(
Ex − PzBy

m

)
1t, py

)
(15)

f 4∗(x̃, y, px, py) = f 3∗
(

x̃, y, px, py − e

(
Ey + PzBx

mγ

)
1t

)
.

Step A3. Betweentn+1/2 andtn+1, we repeat again Step A1. Cubic spline interpolation
is then used to obtain the distribution function at the grid point at each integration step. The
equation for the perpendicular motion (9) is solved betweentn−1/2 andtn+1/2 using the time
centered scheme,

P
n+ 1

2

z i+ 1
2 , j+ 1

2
= P

n− 1
2

z i+ 1
2 , j+ 1

2
+ e1t En

z i+ 1
2 , j+ 1

2
. (16)

Poisson equation (10) is solved at timetn+1/2 using a parallel FFT1 program implemented
on the Cray T3E computer.

1 FFT, fastFouriertransform.
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3.3. Maxwell Equations

The Maxwell equations (11), (12), and (13) are solved using a usual leapfrog scheme
leading to

B
n+ 1

2

x i+ 1
2 , j
= B

n− 1
2

x i+ 1
2 , j
− 1t

1y

(
En

z i+ 1
2 , j+ 1

2
− En

z i+ 1
2 , j− 1

2

)
(17)

B
n+ 1

2

y i, j+ 1
2
= B

n− 1
2

y i, j+ 1
2
+ 1t

1x

(
En

z i+ 1
2 , j+ 1

2
− En

z i− 1
2 , j+ 1

2

)

En+1
z i+ 1

2 , j+ 1
2
= En

z i+ 1
2 , j+ 1

2
− 1t

εo
J

n+ 1
2

z i+ 1
2 , j+ 1

2
+ c21t

1x

(
B

n+ 1
2

y i+1, j+ 1
2
− B

n+ 1
2

y i, j+ 1
2

)
− c21t

1y

(
B

n+ 1
2

x i+ 1
2 , j+1
− B

n+ 1
2

x i+ 1
2 , j

)
. (18)

Notice that the solution of (18) involves the knowledge of the current densityJn+1/2
z at the

middle of the time intervaltn+1/2 which is approximated by

J
n+ 1

2

z i+ 1
2 , j+ 1

2
= e

2m
P

n+ 1
2

z i+ 1
2 , j+ 1

2

[
nn

e i+ 1
2 , j+ 1

2
+ nn+1

e i+ 1
2 , j+ 1

2

]
. (19)

4. FORWARD RAMAN SCATTERING PROBLEM

4.1. Homogeneous Pump Laser Profile

The FRS instability is a parametric instability involving three waves: the incident elec-
tromagnetic wave, here referred to as the “pump” wave(ωo, ko) which drives two unstable
waves; a scattered electromagnetic wave(ωs, ks); and an electron plasma wave(ωe, ke).
The Raman instability occurs when the usual matching conditions hold:

ωo(ko)+1ω = ωs(ks)+ ωe(ke) and ko = ks + ke. (20)

We assume perfectk-matching (since we have a periodic simulation and mode numbers
match exactly), while1ω contains the mismatch (if any). The matching conditions can be
satisfied only ifne≤ ncrit/4 wherencrit is the critical density above which the electromagnetic
wave will not propagate. (A high amplitude electromagnetic wave can however propagate
through an overdense plasma provided that the electron quiver velocity is close to the velocity
of light.) In order to compare our simulation with analytical predictions, it is convenient,
for such a Raman problem, to introduce the classic three-oscillator model. Defining the
complex action amplitudeao,s,e (such that the action density is given byS=aa∗), the
oscillator model in a lossless medium is given by(

∂

∂t
+ vgo

∂

∂x

)
ao = −Casae(

∂

∂t
+ vgs

∂

∂x

)
as = Casa

∗
e (21)(

∂

∂t
+ vge

∂

∂x

)
ae = Caoa∗s .
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Here we have definedC= ke/2
√

2ωoωeωs. The plasma is considered unmagnetized. In the
three-oscillator model with periodic boundary conditions (see Ref. [3]), we can drop the
group-velocity-times spatial gradient terms, and convert to ordinary coupled differential
equations and analyze action density conservation. Equations (21) yield the Manley–Rowe
partition,

Cs(t) = aoa∗o,kx=ko,ky=0+ asa
∗
s,kx=ks,ky=0 = Cs(0) = const (22)

which means photon conservation and

Ce(t) = aoa∗o,kx=ko,ky=0+ aea
∗
e,kx=ke,ky=0 = Ce(0)− 20

∫ t

0
|ae|2 dt. (23)

If losses are taken equal to zero, Eq. (23) means that when one pump photon disappears, one
plasmon is created. Indeed the action sumCe generally decreases since it involves a plasma
wave which can accelerate and trap particles and thus loses energy and action. Thus the utility
of a periodic simulation (the transverse direction y being homogeneous in both the plasma
system and electromagnetic field spatial structures) is clearly demonstrated since it allows
one to use action conservation to separate the effects of three-wave interaction from those
due to nonlinear wave-particle interaction. We have performed numerical simulations using
periodic boundary conditions in both the x and y directions and an initial state consisting of a
significant electromagnetic pump propagating in the x positive direction and homogeneous
in the y direction and a propagating electrostatic plasma wave of modest amplitude, acting
as a perturbation from which FRS can grow, since a Vlasov code is essentially noiseless.
Since the velocities are normalized to c, and frequencies toωp, the choice ofko(=2ks or 2ke)

determines the plasma box lengthLx in terms ofc/ωp. The plasma was chosen with two
electron temperature components, the majority (95%) component with a 15 keV temperature
in both directionspx and py (high enough for electron Landau damping to subdue the
usually rapidly growing but here unwanted backward stimulated Raman scattering) and
a minority (5%) px-component at 100 keV (to enhance wave-particle interaction). With
these parameters, a good frequency match was obtained by choosingkoc/ωp= 2.4, i.e., a
box lengthLx = 5.23c/ωp (we take in the second directionL y= 20c/ωp). The normalized
pump electric field amplitude iseEo/mωpc= 0.28 which gives a quiver momentum of
posc/mc' 0.10 (for a 10.6µm−CO2 laser, the corresponding intensity is 1.8 1014 W/cm2).
The density as compared tothe critical density is thenne/ncrit ' 0.15.

The time behavior of the action densities from the 2D Vlasov simulation are shown in
Figs. 1 and 2 together with the relevant action sum. The action is transferred back and forth
between the pump and daughter waves in a classic fashion previously met in a 1D Vlasov
simulation (see Ref. [3]) with an accumulating loss due the plasma wave and the action trans-
fer to accelerated particles. As expected from (22) the action sumCs for the electromagnetic
wave pair is well conserved (to within 2%), while the pump-plus-plasma sumCe decreases.
Figure 3 shows thex− px phase space representationf (x, y= L y/2, px, py= 0) afforded
by the Vlasov code. Here color shading is used to indicate the relative values of normalized
phase space density between 10−3 and 10−4. Figure 3 is in good agreement with numeri-
cal results obtained directly by a 1D periodic Vlasov code and seems to indicate a classic
acceleration process when the transverse laser profile is chosen to be homogeneous: they
clearly exhibit the acceleration of positive velocity particles followed by the trapping and
formation of vortices with spiral orbits in the phase space.



FIG. 1. Time behavior of the electromagnetic action densities obtained from the 2D semi-Lagrangian Vlasov
code: The pumpSo=aoa∗o , the StokesSs=asa∗s , and their sumCo= So+ Ss.

FIG. 2. Time behavior of the pump action densitySo and the plasma action densitySe and their action sum
Ce= So+ Se indicating the occurrence of action transfer from the plasma wave to accelerated particles.
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4.2. Gaussian Pump Laser Profile

To further illustrate the influence of transverse effects on the particle acceleration mech-
anism, a numerical simulation with a pump light with a gaussian amplitude profile is then
investigated. The numerical resolution of Maxwell’s equations (11) to (13) requires in that
case the knowledge of the initial electromagnetic fieldBx, By, and momemtumPz for
a gaussian profile amplitude ofEz given in the formEzo(y)= Eoe−β(y−yo)

2
. We choose

eEo/mωpc= 0.35. Thus the fields are computed by considering an electromagnetic wave
propagation in a homogeneous plasma. Assume an expression of the electric field in the
following form, with ζ(t) = ω(ky)t − kox − kyy,

Ez(x, y, t) = 1√
2π

∫ +∞
−∞

dky Ẽo(ky) expi ζ(t), (24)

whereẼo(ky) is the Fourier transform of the amplitude profile. Equations (11), (12), and
(9) lead to the analytic solutions forBx, By, Pz, at timetωp=−1t/2,

Bx(x, y,−1t/2) = 1√
2π

∫ +∞
−∞

dky
ky Ẽo

ω(ky)
expi ζ(−1t/2) (25)

By(x, y,−1t/2) = 1√
2π

∫ +∞
−∞

dky
−koẼo

ω(ky)
expi ζ(−1t/2) (26)

Pz(x, y,−1t/2) = 1√
2π

∫ +∞
−∞

dky
−ieẼo

ω(ky)
expi ζ(−1t/2), (27)

where the electromagnetic frequencyω = ω(ky) obeys the dispersion relation

ω2 = ω2
p + k2

oc2+ k2
yc2 = ω2

o + k2
yc2. (28)

This second numerical simulation is conducted with a maximum quiver velocity ofposc/

mc∼ 0.134 located initially aty= L y/2. The time step used here is1tωp= 0.05. Using
a phase space grid ofNx NyNpx Npy of 64× 32× 128× 32, i.e., 8,388,608 “particles,” the
CPU time on the Cray-C94 computer is 0.56µs per time step per grid point, i.e., about 8 h
CPU time up to 300ω−1

p . Detailed comparison of the code version on the parallel T3D-T3E
computer will be given later. The corresponding phase space plots of the distribution function
f (x, y= L y/2, px, py= 0) are shown in Fig. 4. Similar particle acceleration structures can
be seen with spirals inside the vortex structure which implicitly reflect the history of the
particles trapped as the wave built up. There are, however, little changes in maximum
momentum leading to an acceleration untilmc2(γ − 1)∼ 1.5 MeV.

5. NUMERICAL SIMULATION OF CASCADE PROCESSES

Among the studies that have been undertaken to discover new techniques to accelerate
particles up to ultrarelativistic energies, the ones based on the generation of large amplitude
plasma waves (theoretically capable of reaching an electric field of the order of GeV/m)
seem very promising. A second way to obtain an electric field of such intensity is to inject
two electromagnetic waves in plasma of low density (laser beatwave concept). To obtain
fields as strong as possible, the difference of frequencies of the two waves must be chosen to
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FIG. 4. Thex− px phase space representation in the case of a transverse gaussian profile of the laser light at
different times during plasma evolutiontωp = 140, 160, 180, 200.

resonate with the plasma frequency. In these conditions the beat of these two electromagnetic
waves induces by resonance a high-phase velocity longitudinal wave, which traps and
accelerates electrons to ultrarelativistic energies. The recent UCLA (University of California
at Los Angeles) experiment ratio of pump frequency to plasma frequency is very high
(ωpump/ωplasma≈ 33), which makes it difficult to describe such experiments by numerical
simulations with the usual numerical codes. Because this high ratio imposes a prohibitive
computer burden on a direct attack via Eulerian Vlasov or particle-in-cell (PIC) simulation,
we have recently proposed a hybrid model: the one-and-one-half dimension(11

2 D)Eulerian



RAMAN SCATTERING AND PLASMA BEATWAVE ACCELERATION 469

Vlasov code (see Refs. [11, 12]) which has been modified to interface with the high-
frequency complex envelopes rather than interfacing directly with the elctromagnetic part
of the Maxwell equations. The important physics are taking place on the plasma period
time scale; the light waves that are generating the plasma wave have frequencies of 30
or more times the plasma frequency (see Refs. [9, 10]). The hybrid model (which we
have called the Hilbert–Vlasov code, HV) becomes an efficient method to investigate in
detail the physics of beatwave experiments and we expect that the HV code is doing a
good job of imitating the full electromagnetic Maxwell–Vlasov code at 1/1000 of the
cost.

However, in beatwave experiments, self focusing, side scattering, cascade processes
are also important. Therefore a two-dimensional model is required. For economy in the
analysis of our problem, our pump frequency is chosen to be smaller than the experiment
and in order to take into account all electromagnetic effects induced by side scattering and
the cascade mechanism of the electromagnetic waves, a Vlasov–Maxwell model is used
here.

In this section we present results from a 2D Vlasov simulation to investigate the relative
importance of Raman scattering (forward scattering, side scattering) and cascade focusing.
The cascade process is a more complicated situation in which, if a sufficiently intense Stokes
(or idler here) wave is generated, it can then act as a secondary pump wave and generate a
higher-order Stokes shifted wave at frequencyω2s=ωs−ωe and so on. A whole hierarchy
of higher order Stokes/anti-Stokes sidebands can be generated in this fashion (however, the
anti-Stokes wave is in this case attenuated rather than amplified). By choosing a high pump
frequency value(ωo= 4.147ωp), it is then possible to excite a cascade process, but also a side
scattering process in beatwave excitation provided that the length boxL y is sufficient. The
choice of a pump wavenumber ofkoc/ωp= 71k' 4.025 (where1k= 2π/Lx = 0.575ωp/c
is the fundamental wavenumber in the x direction) allows a rich variety of possible coupling
(Raman cascades and side scattering and its cascade). The corresponding idler wave is
ωs= 3.043ωp.

A first series of simulations is performed to illustrate an example of down-cascading of
the idler wave to a second Stokes component in the case of a beatwave experiment. The
frequency spectrum of the transverse electromagnetic fieldEz is presented in Fig. 5. Idler
and pump peaks are clearly resolved in the electromagnetic spectrum and the peaks are
in good agreement with the predictions obtained from the matching conditions and linear
dispersion relations (see Table I). As expected, the second Stokes (ω2s= 1.993ωp) can
be seen in the electromagnetic spectrum (this electromagnetic spectrum exhibits an anti-
Stokes component close to the theoretical valueωas= 5.270ωp but also a third Stokes and
second anti-Stokes cascade frequency close toω3s∼ωp and ω2as' 6.3ωp, but these
components remain at a very small level). Looking at the electromagnetic action
density evolution gives a more precise comparison between both modes. The longitu-
dinal action densitiesSo=aoa∗o(kx = ko, ky= 0) (for pump), Ss (for idler), S2s (for the
one-step cascade Stokes),S3s (for the second step cascade Stokes),Sas (for the anti-
Stokes) together with their sumCs are shown in Fig. 6 (which is the first electromag-
netic Manley–Rowe invariant). As expected the action sumCs is well conserved (to within
3%).

The semi-Lagrangian Vlasov code allows thus a precise comparison with the mode cou-
pling theory and with the Manley–Rowe invariants. But the most striking advantage of this
model is the very fine resolution in phase space capable to resolving the finest mechanism
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TABLE I

Pump wave Scattered wave Plasma wave 1ω

Eko(71k, 0) Eks(51k, 0) Eke(21k, 0)
0.046ωp

ωo= 4.147ωp ωs= 3.043ωp ωe= 1.056ωp

Eks(51k, 0) Ek2s(31k, 0) Eke(21k, 0) −0.006ωp
ωs= 3.043ωp ωs= 1.993ωp ωe= 1.056ωp

Ek2s(31k, 0) Ek3s(1k, 0) Eke(21k, 0) −0.21ωp
ωs= 1.993ωp ωs= 1.153ωp ωe= 1.056ωp

Ekas(91k, 0) Eko(71k, 0) Eke(21k, 0) −0.06ωp
ωas= 5.270ωp ωo= 4.147ωp ωe= 1.056ωp

Eko(71k, 0) Eks(51k,±1k) Eke(21k,±1k) −0.02ωp
ωo= 4.147ωp ω′s= 3.097ωp ω′e= 1.070ωp

Ek′s(51k,±1k) Ek′2s(31k,±1k) Ek′e(21k,±1k) −0.10ωp
ω′s= 3.097ωp ω′2s= 2.075ωp ω′e= 1.070ωp

Ek′as(91k,±1k) Eko(71k, 0) Ek′e(21k,±1k) −0.09ωp
ω′s= 5.125ωp ωo= 4.147ωp ω′e = 1.070ωp

FIG. 5. Frequency spectrum of the transverse electromagnetic fieldEz: idler and pump peaks are in good
agreement with the theoretical valuesωs = 3.043ωp andωo = 4.147ωp. The electromagnetic spectrum exhibits
also down-shifted (Stokes) and up-shifted (anti-stokes) peaks due to cascade processes.
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FIG. 6. Electromagnetic action density evolution of pump(So), idler (Ss), one-step cascade Stokes(S2s),
second-step cascade Stokes(S3s), and anti-Stokes(Sas) together with their mutual sumCs (corresponding to the
first electromagnetic Manley–Rowe invariant), obtained in the case of an homogeneous transverse laser profile.

of particle acceleration. In Fig. 7 the plots of the distribution functionf (x= 0, y= L y/2, px,

py) are presented at various times showing the formation of an accelerated particle beam
without transverse dispersion. More details of particle acceleration can be found in Fig. 8 in
which we have represented the time evolution of the distribution functionf (x, y= L y/2, px,

py= 0) in the x− px phase space plane. Figure 8 exhibits clearly again the acceleration
of positive velocity particles followed by trapping and the formation of vortices around a
momentum corresponding to the plasma wave velocityvϕ/c' 0.918 or pϕ/mc' 2.32.

With minor modifications, the 2D Vlasov code can also simulate the Raman side scat-
tering processes. By modifying the initial distribution perturbation in order to allow the
growth of this instability (we just perturb now the corresponding plasma mode in den-
sity with an amplitude of 10−2), a second series of numerical simulations is carried out to
analyze the influence of two-dimensional effects. The frequency spectra of the transverse
electromagnetic fieldsBx andBy are illustrated respectively in Figs. 9 and 10. The peaks
of theBy-part of the electromagnetic wave correspond to the classical cascade process met
previously by the idler wave and its decay. The dominant peaks in theBy spectrum cor-
respond to the pump and idler wave, and the values obtained here match rather well with
the theoretical values. On the other hand, the growth of the x-component of the magnetic
field cannot be interpreted without taking into account now two-dimensional effects such
as side scattering because this component cannot be excited in a purely one-dimensional
model. TheBx magnetic spectrum exhibits the growth of a cascade process of the side
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FIG. 7. Distribution function plotsf (x= 0, y= Ly/2, px, py) at timestωp= 8, 98, 143, during plasma evo-
lution showing the formation of an accelerated particle beam without transverse dispersion.

scattering mode with dominant peaks located atω1∼ 2ωp andω2∼ 3ωp. Further confirma-
tion of the occurring of side scattering is provided in the examination of the action density
evolution. In Fig. 11 we have again plotted the time evolution ofSo, Ss, S2s, S3s, Sas, and
their sumCs (the different actions are computed using a two-dimensional Fourier transform
and then selecting the corresponding modeskx = ko, ks, k2s, and so on, withky= 0). Now
Cs exhibits a strong decrease which seems to indicate that the plasma evolves in a more
complicated way leading to the excitation of transverse electromagnetic modes. Figure 12
show the plots off (x= 0, y= L y/2, px, py). In spite of choosing a particular position in
the configuration space, the behavior of the distribution function remains similar at another
point of the configuration space. The different plasma waves generated as a result of Raman
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FIG. 9. Frequency spectrum of theBx magnetic field component showing the occurring of side scattering and
side cascade processes in plasma.

side scattering coupling can give rise to a strong plasma turbulence, which is responsible
for longitudinal electron acceleration and also a strong “heating” or stochastic acceleration
in the perpendicular direction (y-axis).

6. OPTIMIZATION AND PERFORMANCE

All present results were processed on the Cray C94-C98, Cray T3D, and Cray T3E com-
puting systems. The vectorized version of the Vlasov code achieved a data processing rate
of 250 Mflops and demonstrated a reasonably high vectorized efficiency. Two grid system
Nx NyNpx Npy of 128× 8× 128× 32 and then of 128× 32× 128× 32 were investigated
resulting in a corresponding number of 4,194,306 and 16,777,216 particles. The CPU time
was close to 0.54µs per time step per particle on the Cray C94 computer while a first
version of the parallelized code gave a value of 24, 64µs per time step per particle and per
processor.

The primary task of converting a code to run on a distributed memory machine is to opti-
mize array layouts in memory so that the computational load is well balanced among the pro-
cessors. In our simulation model, the distribution function is partitioned into blocks and this
methodology simplifies the programming structure and loads to natural load-balancing of
all the processors. Cubic spline interpolation introduced at each step of the splitting scheme
requires tridiagonal matrix inversions. One method for parallelizing matrix operations is
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FIG. 10. Frequency spectrum of theBy magnetic field component with the usual dominant peaks characterizing
the pump and idler longitudinal cascade.

to split the matrix into submatrices and follow a fork-and-join model (with local cyclic
reduction algorithm; see for instance Refs. [13, 14]), where each processor is given some
number of operations to perform local factorization of partitioned matrices). For the present
simulations, a much simpler approach, i.e., static domain decomposition followed by matrix
transposition, was chosen. For example, in order to compute the matrix inversion along the
x direction, the domain was partitioned into thepx-direction and then a transposition was
necessary to inverse the tridiagonal matrix along thepx-direction.

A substantial amount of improvement was achieved by optimizing the node-to-memory
communications which critically affect the parallel efficiency. The optimized version led
then to a CPU time of 9.5µs per time step, per particle, per processor. The numerical
efficiency improvement was by a factor of 3 and seemed to indicate that one processor
of the Cray C94 is equivalent to 20 processors on the T3D computer (and equivalent to
18 processors on the T3E computer). For example, the last simulation presented in this
section was carried out using a grid samplingNx NyNpxNpy of 128× 32× 256× 32, i.e.,
33,554,432 particles and took 7 h on the T3Ecomputer using 32 processors for 3000 time
steps, i.e., 8.03µs per time step, per particle, per processor.

For this simulation the load balance measured by considering the total CPU time (com-
munication plus calculation) divided by the number of processors and by the total elapsed
time led to a value of 0.94. (If all of the processors are busy all of the time, then the
above ratio will be unity.) The ratio for the 2D Vlasov code of 0.94 indicated a reasonably
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FIG. 11. Time evolution of the corresponding electromagnetic action densitySo (pump wave),Ss (idler wave),
S2s (one-step longitudinal Stokes),S2s=a2sa∗2s(kx = k2s, ky= 0), S3s (second-step longitudinal Stokes),Sas (anti-
Stokes wave), and their mutual sumCs. Now Cs exhibits a strong decrease showing the excitation of transverse
electromagnetic modes (due to side scattering).

efficient use of all processors. The efficient use of the processors was aided by choosing
grid dimensions which matched the number of processors in a partition. If the code is run
on a 64-node partition, then a grid resolution (on thex or px direction) of at least 64 points,
or some multiple (we use 256 points) thereof, in at least one direction is optimal. The com-
munication time required for the matrix transposition was close to 12% of the total CPU
time in that case. Another measure of parallel efficiency is scalability, i.e., the reduction in
computing time achieved when the number of processors is doubled. For the present code,
wall clock times on the T3D computer were measured on the partitionNx NyNpxNpy of
256× 8× 256× 32 to obtain the following measure of scalability,

TCPU16-node/TCPU32-node' 2.108 (29)

TCPU32-node/TCPU64-node' 2.060. (30)

Additional efficiency improvement for the present code is still possible by replacing
global synchronous message passing calls with several asynchronous calls using the MPI2

library or the non-standard SHMEM3 library of the Cray system. In essence a sustained
effort must be maintained to realized the full potential of scalable parallel systems.

2 M.P.I.,messagepassinginterface.
3 SHMEM, sharedmemory.
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FIG. 12. Plots of the electron distribution function in thepx − py momentum space atx= 0 andy= L y/2,
at timestωp= 8, 120, and 150, leading to a strong longitudinal electron acceleration and heating in the transverse
spatial direction.

7. CONCLUSION

In order to investigate the transverse geometrical effects on the particle acceleration,
numerical simulations using a two-dimensional relativistic and semi-Lagrangian Vlasov
code have been carried out in an electromagnetic regime related to PBWA ad FRS. Due to
the extremely large computational resources required for treating the distribution function
described in a four variable phase space the use of a massively parallel computer was nec-
essary and enabling. A Vlasov algorithm using a splitting scheme for message passing in a
multi-computer environment was developed and implemented on T3D and T3E computers.
Because of the Eulerian characteristic of the distribution function, the (semi-Lagrangian)
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Vlasov code simplifies programming structure because one does not have to cope with
the allocation of the particles between processors since Euler elements stay in place. This
code employed a classic time splitting scheme, cubic spline interpolation, and matrix trans-
position and was adapted to optimally use the particular parallel architecture of the Cray
T3D and T3E (both processor’s specifications and node-to-node communications). The 2D
Vlasov code gives a good description of the electron acceleration dynamics even in very
low level regions of phase space. Both approaches (particles-in-cell and the Vlasov code)
require a more complicated comparison of the interplay between the physics aspect of the
model on the one hand and performance and optimization issues on the other. Future work
will address the use of a full relativistic Vlasov model for the study of the laser wakefield
at ultrahigh intensity.
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